↳ ITRS
↳ ITRStoIDPProof
z
Cond_eval(TRUE, x) → eval(+@z(*@z(-@z(2@z), x), 10@z))
eval(x) → Cond_eval(>=@z(x, 0@z), x)
Cond_eval(TRUE, x0)
eval(x0)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
z
Cond_eval(TRUE, x) → eval(+@z(*@z(-@z(2@z), x), 10@z))
eval(x) → Cond_eval(>=@z(x, 0@z), x)
(0) -> (1), if ((x[0] →* x[1])∧(>=@z(x[0], 0@z) →* TRUE))
(1) -> (0), if ((+@z(*@z(-@z(2@z), x[1]), 10@z) →* x[0]))
Cond_eval(TRUE, x0)
eval(x0)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
z
(0) -> (1), if ((x[0] →* x[1])∧(>=@z(x[0], 0@z) →* TRUE))
(1) -> (0), if ((+@z(*@z(-@z(2@z), x[1]), 10@z) →* x[0]))
Cond_eval(TRUE, x0)
eval(x0)
(1) (EVAL(x[0])≥NonInfC∧EVAL(x[0])≥COND_EVAL(>=@z(x[0], 0@z), x[0])∧(UIncreasing(COND_EVAL(>=@z(x[0], 0@z), x[0])), ≥))
(2) ((UIncreasing(COND_EVAL(>=@z(x[0], 0@z), x[0])), ≥)∧(-1)Bound ≥ 0∧0 ≥ 0)
(3) ((UIncreasing(COND_EVAL(>=@z(x[0], 0@z), x[0])), ≥)∧(-1)Bound ≥ 0∧0 ≥ 0)
(4) ((-1)Bound ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL(>=@z(x[0], 0@z), x[0])), ≥))
(5) ((UIncreasing(COND_EVAL(>=@z(x[0], 0@z), x[0])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0∧(-1)Bound ≥ 0)
(6) (x[0]3=x[1]4∧x[0]2=x[1]3∧x[0]1=x[1]2∧>=@z(x[0]1, 0@z)=TRUE∧>=@z(x[0]2, 0@z)=TRUE∧+@z(*@z(-@z(2@z), x[1]3), 10@z)=x[0]3∧+@z(*@z(-@z(2@z), x[1]4), 10@z)=x[0]4∧x[0]=x[1]1∧+@z(*@z(-@z(2@z), x[1]1), 10@z)=x[0]1∧+@z(*@z(-@z(2@z), x[1]2), 10@z)=x[0]2∧>=@z(x[0]3, 0@z)=TRUE∧+@z(*@z(-@z(2@z), x[1]), 10@z)=x[0]∧>=@z(x[0], 0@z)=TRUE ⇒ COND_EVAL(TRUE, x[1]4)≥NonInfC∧COND_EVAL(TRUE, x[1]4)≥EVAL(+@z(*@z(-@z(2@z), x[1]4), 10@z))∧(UIncreasing(EVAL(+@z(*@z(-@z(2@z), x[1]4), 10@z))), ≥))
(7) (>=@z(+@z(*@z(-2@z, +@z(*@z(-2@z, x[1]), 10@z)), 10@z), 0@z)=TRUE∧>=@z(+@z(*@z(-2@z, +@z(*@z(-2@z, +@z(*@z(-2@z, x[1]), 10@z)), 10@z)), 10@z), 0@z)=TRUE∧>=@z(+@z(*@z(-2@z, +@z(*@z(-2@z, +@z(*@z(-2@z, +@z(*@z(-2@z, x[1]), 10@z)), 10@z)), 10@z)), 10@z), 0@z)=TRUE∧>=@z(+@z(*@z(-2@z, x[1]), 10@z), 0@z)=TRUE ⇒ COND_EVAL(TRUE, +@z(*@z(-2@z, +@z(*@z(-2@z, +@z(*@z(-2@z, +@z(*@z(-2@z, x[1]), 10@z)), 10@z)), 10@z)), 10@z))≥NonInfC∧COND_EVAL(TRUE, +@z(*@z(-2@z, +@z(*@z(-2@z, +@z(*@z(-2@z, +@z(*@z(-2@z, x[1]), 10@z)), 10@z)), 10@z)), 10@z))≥EVAL(+@z(*@z(-@z(2@z), +@z(*@z(-2@z, +@z(*@z(-2@z, +@z(*@z(-2@z, +@z(*@z(-2@z, x[1]), 10@z)), 10@z)), 10@z)), 10@z)), 10@z))∧(UIncreasing(EVAL(+@z(*@z(-@z(2@z), x[1]4), 10@z))), ≥))
(8) ((4)x[1] + -10 ≥ 0∧(-8)x[1] + 30 ≥ 0∧(16)x[1] + -50 ≥ 0∧(-2)x[1] + 10 ≥ 0 ⇒ (UIncreasing(EVAL(+@z(*@z(-@z(2@z), x[1]4), 10@z))), ≥)∧-1 + (-1)Bound ≥ 0∧-2 ≥ 0)
(9) ((4)x[1] + -10 ≥ 0∧(-8)x[1] + 30 ≥ 0∧(16)x[1] + -50 ≥ 0∧(-2)x[1] + 10 ≥ 0 ⇒ (UIncreasing(EVAL(+@z(*@z(-@z(2@z), x[1]4), 10@z))), ≥)∧-1 + (-1)Bound ≥ 0∧-2 ≥ 0)
(10) ((4)x[1] + -10 ≥ 0∧(16)x[1] + -50 ≥ 0∧(-2)x[1] + 10 ≥ 0∧(-8)x[1] + 30 ≥ 0 ⇒ (UIncreasing(EVAL(+@z(*@z(-@z(2@z), x[1]4), 10@z))), ≥)∧-2 ≥ 0∧-1 + (-1)Bound ≥ 0)
POL(-@z(x1)) = (-1)x1
POL(>=@z(x1, x2)) = 0
POL(0@z) = 0
POL(*@z(x1, x2)) = x1·x2
POL(TRUE) = -1
POL(10@z) = 10
POL(2@z) = 2
POL(COND_EVAL(x1, x2)) = -1
POL(EVAL(x1)) = 0
POL(+@z(x1, x2)) = x1 + x2
POL(FALSE) = -1
POL(undefined) = -1
EVAL(x[0]) → COND_EVAL(>=@z(x[0], 0@z), x[0])
COND_EVAL(TRUE, x[1]) → EVAL(+@z(*@z(-@z(2@z), x[1]), 10@z))
EVAL(x[0]) → COND_EVAL(>=@z(x[0], 0@z), x[0])
COND_EVAL(TRUE, x[1]) → EVAL(+@z(*@z(-@z(2@z), x[1]), 10@z))
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
Cond_eval(TRUE, x0)
eval(x0)